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ABSTRACT 

Autonomous aerial systems have started to gain much traction in the military 

intelligence, surveillance and reconnaissance domain. The remotely piloted systems, such 

as the Predator, are already successful unmanned systems; the next step forward is to use 

autonomous systems to overcome high manning requirements. These systems are 

scalable and serve as excellent force multipliers, but there are other technological issues 

to overcome to qualify an autonomous aerial system, such as navigation and collision 

avoidance.   

This thesis explores autonomous system capabilities using quadrotors in the 

context of the Singapore Armed Forces. It first applies a systems engineering approach to 

analyze stakeholders’ needs, then translates the needs to functional requirements, and 

concludes with the development of a possible system architecture for an autonomous 

quadrotor system. The author then conducted indoor flight experiments to validate the 

capabilities of waypoint navigations and collision avoidance. The results were highly 

encouraging and qualified the aerial platform for subsequent visual sensor integration.    
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EXECUTIVE SUMMARY 

The Singapore Armed Forces faces an imminent manning crunch, as the number 

of conscripts enlisted per year is likely to drop to 15,000 from 21,000 (Saad 2012). This 

is a result of the downward trend in the nation’s total fertility rate. As the standing 

defense force becomes leaner, it is imperative that the SAF exploits technological 

advances to develop highly effective systems that require fewer operators in achieving 

the ultimate mission of securing swift and decisive victories should diplomacy fail. The 

concept of autonomous aerial systems appears a feasible and logical solution in 

maintaining precision-strike capabilities for the SAF, which can be labor intensive, 

especially in target acquisition. An autonomous aerial system with onboard visual sensors 

may offer target acquisition with reduced manning. Moreover, the system is potentially 

scalable and so many machines to one operator ratio is highly achievable. 

The systems engineering approach was adopted in this research to determine a 

potential system architecture for such an autonomous aerial system. The author first 

defined the boundary of the design space the context of the problem space. Thereafter, 

the thesis investigated the limitations and constraints that will impose on the system. 

Following which, the author performed the needs analysis on the relevant stakeholders of 

the system, which is vital in deriving the functional requirements. In addition, the thesis 

also elaborated on the design reference mission and operational concept to provide the 

operational context of the system. These steps contributed to the formulation of a 

proposed system architecture for an autonomous aerial system with on-board visual 

sensors, capable of cooperative target acquisition.  

The proposed autonomous aerial system recommends optimized search paths to 

save resources such as exposure time and fuel. Not everywhere in the area of search is 

logical to detect a target. For example, the system ignores bodies of water during 

detection of a land target in flight-path optimization. Using a pre-processed map provided 

by the operator, the system reads the feasible search area and performs an optimized 

search using binary integer linear programming (ILP). The output is a series of waypoints 

arranged sequentially for the aerial system to follow. From a simulation performed in an 



 xviii 

area of operation with a non-feasible search area of approximately 30%, the use of ILP 

achieved a savings of approximately the same ratio in distance traveled. 

While waypoints may guide an autonomous aerial system navigationally, there 

are bound to be obstacles in the path of the system. Hence, the proposed autonomous 

aerial system is capable of collision detection and obstacle avoidance. The on-board 

visual sensors detect any imminent obstacles. With the known coordinates of the 

obstacles, the system generates a near-optimal trajectory real-time to overcome the 

obstacles. Cowling et al., (2010) has proposed the use of a form of direct method of 

calculus of variables in this trajectory optimization process. Crucial to the application of 

the direct method was exploitation of the inverse dynamics of the aerial system so that 

the optimization occurs in the output space rather than the control space. In addition, the 

method optimizes the variables in the virtual domain instead of the conventional time 

domain, decoupling the time and space parameterizations, whose combination tends to 

create complexity in resolving the variables. Collectively, the method used is inverse 

dynamics in the virtual domain (IDVD). 

The Autonomous Systems Engineering and Integration Laboratory (ASEIL) in 

Naval Postgraduate School was where the author performed experiments to verify the 

optimized trajectories generated. The author conducted three verification tests using 

Qball-X4 quadrotors with modified controllers. With the simulated waypoints generated 

from the optimized flight path derived from the ILP, the Qball successfully performed 

waypoint navigation in the first verification test. In the second test, the Qball executed an 

overhead maneuver according to the near-optimal trajectory generated by the IDVD 

method, avoiding collision with a vertical obstacle. The third test verified the controller’s 

ability to mix guidance commands and execute flat and overhead trajectories 

interchangeably. 

While this research was not able to integrate the visual sensor physically, owing 

problems with vendor software, the architecture and control algorithm developed stand 

ready for such integration. It is recommended that future work focus on the physical 

integration of the visual sensor to validate the autonomy of proposed aerial systems.   
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I. INTRODUCTION 

A. THE UAV AS A FORCE MULTIPLIER 

Like most developed nations, Singapore is experiencing a declining total fertility 

rate (TFR), which began in the early 1990s. According to the Singapore Department of 

Statistics (2015), the TFR in 2014 was 1.25, significantly below the replacement level of 

approximately 2.1 children per woman. Sustained by conscription, the Singapore Armed 

Forces (SAF) relies on the civilian population to form the standing defense force. In 

2011, the incumbent Minister of Defense, Dr. Ng Eng Hen reported 21,000 enlisted 

conscripts (Saad 2012). He added that this number could decrease to 15,000 and possibly 

lower in the future. As the standing defense force grows leaner, it is imperative that the 

SAF exploits technological advances to assure highly effective systems that require fewer 

operators while still achieving the ultimate mission of securing swift and decisive 

victories should diplomacy fail. The concept of autonomous aerial systems appears to be 

a feasible and logical solution in maintaining SAF precision-strike capabilities, which are 

typically labor intensive, particularly in target acquisition. An autonomous aerial system 

with onboard visual sensors may prove effective in performing target acquisition with 

reduced manning. Moreover, the system is potentially scalable and so many machines to 

one operator ratio is highly achievable. The unmanned aerial vehicle (UAV) is an 

example of a force multiplier used by the SAF. 

UAVs first played a sustained operational role in the Vietnam War (Cook 2007). 

Largely functioning within the intelligence, surveillance and reconnaissance (ISR) 

domain, mission commanders used UAVs in place of manned reconnaissance aircrafts 

because of their ability to perform “missions deep within the enemy territories at a 

fraction of the cost” (Cook 2007, 3). In a high-threat environment, the employment of 

UAVs reduces the risk of human casualties. According to the Office of the Secretary of 

Defense, as of September 2004, UAVs have clocked over 100,000 of flight hours in 

support of Operation Enduring Freedom and Operation Iraqi Freedom (2005). 

Furthermore, the Department of Defense (DOD) increased its spending on UAVs by 

more than tenfold between 2000 and 2012 (Boyle 2012), and UAVs now account for 
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approximately a third of DOD military aircraft (Shachtman and Akerman 2012). While 

strike capability is possible through weaponized UAVs, as demonstrated by the 

Predators, the UAV’s most common role is within the realms of target acquisition. 

B. TARGET ACQUISITION 

The Joint Chiefs of Staff, in Joint Publication (JP) 3-60, defines “target 

acquisition” as “the detection, identification, and location of a target in sufficient detail to 

permit the effective employment of weapons” (2007). Target acquisition can be a 

daunting task. Knowing where to look for the adversary is a huge intelligence issue. To 

detect, identify and pinpoint the location of the target in an area of operation that extends 

for miles requires a great many assets. Nevertheless, such an effort is vital in the 

responsible strike operations expected of a world-class military today, and the SAF has 

invested tremendous resources in remaining ready and relevant in the future battlefield. 

Strike-observers mission (STORM) teams are one of the critical assets the SAF 

uses to achieve third-generation fighting capabilities. As depicted in Figure 1, a STORM 

Team is a forward sensor unit that detects and destroys targets from a mobile platform. 

The sensors carried by the team include UAVs for long-range detection and handheld 

binoculars for short-range location of targets. STORM teams enhance SAF’s 

effectiveness by neutralizing key targets such as command posts, artillery, and multiple-

launch rocket systems (MLRS). The force configuration of a typical STORM team 

includes two sensor specialists (Defence Media Centre 2008) to operate the UAV and 

control onboard sensors. It is not currently possible to trim these personnel. Thus, the 

number of pilots available restricts the overall target-acquisition capability. Staffing 

needs, however, have potential for reduction if autonomous machines can perform 

functions or operations that have historically required a human. 
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Figure 1.  Role of STORM in SAF Integrated Strike Missions. Adapted from 
Defence Media Centre (2011). 

C. AUTONOMOUS OPERATIONS 

The term UAV has often been misinterpreted. Commonly known UAVs such as 

the Global Hawk and Predator are not exactly unmanned systems. There is still a pilot 

remotely controlling the vehicle, and thus the man-to-machine ratio remains one. Lin et 

al. propose that an autonomous machine has “the capacity to operate in the real-world 

environment without any form of external control, once the machine is activated and at 

least in some areas of operation, for extended periods of time” (2008, 4). Such machines 

could improve the man-to-machine ratio either by decreasing the number of operators 

required or increasing the number of machines a single operator can command. In either 

scenarios, the humans in the system can assume other roles, enhancing system 

capabilities overall. To a force that anticipates decreases in available staffing, the notion 

of autonomous operation via machine is compelling. 

While the SAF does not currently employ autonomous militarized equipment, the 

possibility of operationalizing an autonomous system to fulfill command intentions may 
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be within reach. Colonel Chua, SAF (Retired), who heads the Concept and 

Experimentation Office of the Future Systems and Technology Directorate (FSTD), 

anticipates that future warfare will see “many close interactions between soldiers and 

autonomous robots” (Teo 2016). This cooperation between man and autonomous 

machines will greatly improve the situational awareness and lethality of the SAF while 

minimizing danger to troops.  

D. QUADROTORS VS. FIXED-WING UAVS 

Fixed-wing aircrafts offer the user with high speed and long endurance, but their 

inability to fly at low speed or to hover above a locality disqualifies them from certain 

target-acquisition missions. Thus, the notion of using rotary aircraft has gained 

popularity. Rotary aircraft allows hovering, which provides persistent target surveillance 

without a large operational footprint, and vertical takeoff and landing (VTOL), which 

shrinks the area required for launch and recovery and obviates the need for a launcher or 

runway.  

A traditional rotary aircraft has a main rotor that provides lift and pitch and a tail 

rotor to counter reactionary torque. Because the cyclic-pitch mechanism of the main rotor 

is mechanically complex and potentially expensive to maintain, quadrotors appears as an 

attractive alternative. With a pair of counter-rotating propellers connected directly to 

individual motors, the quadrotor has better mobility and higher payload capacity at lower 

maintenance cost. The disadvantages of quadrotors include sensitivity to disturbances and 

dynamic instability—hence their need for precise control implementation. Additionally, 

because the four rotors imply more motors and greater weight, quadrotors consume more 

power for operation. 

The use of fixed-wing UAVs to conduct ISR missions is commonplace, but that is 

not to say that quadrotors in the surveillance realm are unheard of. For example, Aeryon 

Labs, a Canadian company, claims that an Aeryon Scout quadrotor’s visual surveillance 

of a narco-trafficking compound deep in the Central American jungle was crucial in a 

successful drug bust (Guizzo 2011). 
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E. PROBLEM FORMULATION AND THESIS STRUCTURE 

This thesis examines how quadrotors can achieve autonomous target-acquisition 

capability and addresses several problems in the fulfillment of this role.  

First, at the mission-planning phase, there is a need to conduct flight-path 

planning. The quadrotor is nothing more than a platform that executes the instructions of 

the mission commander. It has no artificial intelligence or ability to plan its flight path. A 

human commander must perform this planning action. The necessary inputs for the 

autonomous target-acquisition system are the waypoints along the intended path and the 

tasks to execute. While a human can systematically plot waypoints for a quadrotor to 

follow, the vehicle does not necessarily cover the entire area of operation efficiently. 

There is a need for effective task performance to save resources such as time of asset 

exposure.  

Next, during the execution phase, there bound to be obstacles along the path of 

the autonomous system. These obstacles are likely man-made structures, such as 

buildings, radio towers or overhead bridges. For the survival of the aircraft, it is 

imperative that the quadrotor avoids, at the very least, the known and foreseeable 

obstacles. Therefore, it calls for some form of trajectory correction to avoid collision and 

to overcome the obstacles. 

Finally, at the heart of the autonomous system is target acquisition using on-board 

electro-optical (EO) sensors. While many advanced sensors are available, EO imagery is 

the basic means of target acquisition, because the output is congruent with the human 

vision, and allows for quick user interpretation and intervention when necessary. This 

research therefore also investigates the incorporation of EO output into autonomous 

target-acquisition capability.  

The organization of this thesis as follows: Chapter II explores the needs and 

functions of an autonomous quadrotor using a systems engineering approach. Chapter III 

presents a modeling and simulation environment for the validation of these capabilities. 

Chapter IV discusses the actions required to plan and optimize a search path. Chapter V 

addresses trajectory generation, using a form of direct method to overcome vertical 
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obstacles. Chapter VI explores the control scheme required to mix position commands in 

a quadrotor controller. Chapter VII presents the results of simulations conducted. This 

thesis ends with conclusions and recommendations to study how to further achieve 

autonomous capabilities using quadrotors.  

While it is outside the scope of this research to verify and validate quadrotor 

target acquisition and collision detection through real-time image processing, the latter is 

broached in Appendix A to suggest the feasibility on visual-sensor integration and set the 

stage for future work. 
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II. SYSTEMS ENGINEERING CONSIDERATIONS 

While a big body of literature explored the application space of the quadrotors 

already, not many research efforts have defined the system architecture of the quadrotors, 

especially as pertains to the use of quadrotors in autonomous target acquisition. This 

chapter applies a systems-engineering approach to this question. 

A. BENEFITS OF A SYSTEMS ENGINEERING APPROACH 

Systems engineering is an interdisciplinary approach and means to enable 
the realization of successful systems. It focuses on defining customer 
needs and required functionality early in the development cycle, 
documenting requirements, then proceeding with design synthesis and 
system validation while considering the complete problem. (Haskins et 
al., 2006)   

 

Systems engineering is a discipline vital to the development of complex systems in many 

industries. Systems thinking is an integral part of this approach. According to Honour, an 

emphasis on systems thinking within a program development yields easier and faster 

testing and integration of subsystems (2004), and the outcome of the application is 

typically a high-quality system product achieved with a shorter program schedule and 

lower cost. Honour argues that at the core of the systems-engineering approach is the 

goal of reducing risk early on; systems engineers identify the challenges of testing and 

integration up front and attempt to resolve them in the design phase. This reduces cost 

and time in the production and testing phases.  

B. DEFINITION OF A DESIGN SPACE 

As the SAF addresses the anticipated dearth of conscripts, the nation’s advanced 

technological capabilities and expertise provide an excellent basis for exploring 

autonomy in the realm of ISR, specifically in target acquisition.  

The problem this research seeks to resolve is how to use quadrotors in achieving 

autonomous target-acquisition. The questions stemming from this key problem are a) 



 8 

which system architecture is best suitable and b) what level of autonomy can the 

system support? 

1. Boundaries 

Allowing autonomous systems to operate alone in the battlefield represents a huge 

paradigm shift, challenging expectations and physical, economic, technological, political, 

and psychological boundaries.  

The physical boundary encompasses natural obstacles, ambient environmental 

factors such as temperature and wind speed, and the operating environment of the 

autonomous system. The projected operating environment is discussed in a later section.  

The economic boundary is the limit to the monetary resources allocated for the 

system. As the development costs of an autonomous system are high, the stakeholders 

responsible for developing the system must be mindful in their expenditures. 

The technology readiness level (TRL) of the various subsystems forms the 

technological boundary. Challenges to system integration occur when mismatches in the 

TRLs of subsystems are present. TRL also affects the developmental funding awarded to 

the autonomous system, given that conducting research and developing immature 

technology is expensive.  

The international rules that bind every legitimate country largely define the 

political boundary. In a conflict, the international laws of war and rules of engagement 

(ROE) apply. These rules protect non-combatants and safeguard fundamental 

human rights.   

The intangible perception of autonomous systems constitutes the psychological 

boundary. As mentioned earlier, it is a paradigm shift when thinking machines work 

alongside soldiers in armed conflict. The public may be wary of their potential, and the 

soldiers may doubt their capabilities. Fear of an autonomous system’s losing control and 

triggering catastrophic outcomes will not be easy to eradicate.  
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2. Limitations 

The critical limiting factor for an autonomous system is the communication 

network between the system itself and other command-transmitting stations. Ground 

control stations (GCSs) have difficulty transmitting commands to an autonomous system 

over long distances, especially where there is no line of sight. An autonomous system 

may have difficulty in receiving Global Positioning System (GPS) satellite signals in 

dense vegetation or an urban environment. Interference or jamming from other electronic 

sources may also hinder communication paths.  

The bandwidth capacity of participating communication paths is another limiting 

factor. Given the need to transit videos and imageries, high data throughput and fidelity 

are essential. Existing communication infrastructure may not be able to support an 

autonomous system. 

3. Constraints 

Lack of airspace is a significant constraint in autonomous systems, which require 

freedom of action in the air to perform target acquisition. Enemy aerial-denial weapons in 

the operating environment may potentially diminish the overall capability of a system.  

Safety in operating the autonomous system is a major consideration as well; 

soldiers will need training to operate this unfamiliar system without harm. Moreover, 

because conscripts constitute the bulk of SAF personnel, the unsafe operation of an 

unproven system would compromise public confidence and support for the military.    

Finally, the boundaries discussed above act as restrictive constraints for the 

autonomous system as well.  

C. THE NEEDS ANALYSIS 

Stakeholders may affect the system directly or indirectly. Their differing needs 

and perspectives are the drivers of system requirements.  
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1. The Main Stakeholder: SAF 

The predominant stakeholder, the SAF, is concerned with manpower 

requirements and mission success. The SAF’s ability to deter aggression is crucial to its 

posture as a military force—hence the imperative of leveraging technology to 

compensate for shortfalls in manpower. Despite a lean force, the SAF must remain 

capable of maintaining the same or higher lethality to secure swift and decisive victories 

should deterrence fail. In addition, the SAF is also the key architect in integrating systems 

together to fight as a cohesive force. It is therefore important to ensure interoperability 

between any autonomous system and other existing operational systems.  

2. Operators 

The operators on the ground are the first-hand stakeholders. They are vitally 

concerned with the human–machine interfaces that affect workflow. These users require 

an easy to operate, maintain, and troubleshoot system.  

3. Strike Units 

The artillery battalions or fighter squadrons who remove threats posed by the 

adversary in strike missions represent the strike units. These units require real-time and 

accurate information to prosecute the target. They are concerned with how target 

information arrives as this affects their work processes. 

4. The Adversary 

It may not be intuitive to count the adversary as a stakeholder in the target-

acquisition system. Nevertheless, his ability to evade detection directly drives system 

requirements. While tactics evolve, the form and capabilities of enemy assets remain. 

Prior intelligence on these assets provides understanding as to how best to detect them.  

5. The Public 

The public is now able to access, and even capture, footage of wartime operations, 

which may move through social media at an exponential speed. In times of conflict, the 

need to ensure that soldiers and systems adhere to the defined ROE is a top priority. In 
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peacetime, the public is largely concerned with total military expenditures, as public 

monies fund the defense budget. Responsible spending on research and equipment is 

imperative in developing the system.  

D. OPERATIONAL CONCEPT 

The DOD architectural framework (DODAF) model operation view 1, or OV-1, 

shown in Figure 2 best illustrates the operational concept for an autonomous target 

acquisition system. In this framework, the operator inputs the necessary command 

parameters, which typically consist of search area and type of target, into the GCS. The 

autonomous system computes the optimal flight path for the given area of search. Upon 

receipt of the command to commerce operation, the quadrotors launch and search 

autonomously, leveraging GPS to navigate along the trajectories given. Using a wireless 

camera and onboard computer, the quadrotors perform image processing in real time. 

Once the quadrotor finds the target, it acquires its location and transmits this data to the 

operator. The quadrotor continues to loiter in the target vicinity to provide continuous 

observation and can designate the target to mark it for follow-on strike operations.  

 

 

Figure 2.  OV-1 for Autonomous Target Acquisition 
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E. DESIGN REFERENCE MISSION 

Skolnick and Wilkins define a design reference mission (DRM) as the “projected 

threat and operating environment baseline” by which the desired system meets potential 

challenges and uncertainties through a series of systems-engineering activities (2000, 

208). In this research, the DRM serves as a basis from which further requirements, 

system designs, and performance measures are developed. 

1. Projected Operational Environment 

The projected operation environment (POE) considers aspects of the natural 

environment and potential threats to the system. As this system is intended for SAF use, 

the POE is described in the context of Singapore. 

a. Natural Environment 

• The lighting conditions of the POE range from full sunlight to minimal 
outdoor moonlight at night. 

• The wind condition of the POE ranges from 0–27 knots. As Singapore 
may experience the occasional “Sumatra Squalls,” the upper limit of the 
wind condition is consistent with the upper bound of the Beaufort scale’s 
“strong breeze.” 

• The temperature of the POE ranges from 68°F (20°C) to 97°F (36°C), 
which are the extreme temperatures recorded in Singapore.  

• The humidity of the POE ranges from 60% to 100%.   

• A quadrotor may operate near water bodies or in rain. Therefore, while it 
does not carry out submerged operations, the system must remain operable 
in depths of up to 0.5m and in light rainfall where precipitation is less than 
2.5mm (0.098in) per hour. The system must also be splash resistant.   

b. Threat Details 

Two broad categories generally faced by the quadrotor in the POE are natural or 

man-made. The threats cited as follows are mainly generic and not exhaustive. 

(1) Natural 

• Trees 
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• Dust and dirt 

• Water 

(2) Human 

• Man-made structures 

• Personnel 

• 5.56mm/7.62mm rounds from enemy short-range weapons 

• Destruction of GCS by enemy long-range weapons 

2. Mission Definition 

The mission of the quadrotor is to support the STORM team in autonomous target 

acquisition to facilitate follow-on strikes. Mission success is defined by achievement of 

an optimized search path, high fidelity in the commanded-versus-actual flight path, 

accurate target acquisition, and long-term cooperative tracking of the target. 

In the course of a mission, the autonomous system must carry out several critical 

operational activities, which drive the functional baseline and shape the system 

architecture. These include 

• Integrated network command processing 

• Autonomous launch and recovery 

• Autonomous guidance and control 

• Autonomous target acquisition 

F. FUNCTIONAL ANALYSIS 

According to Blanchard and Fabrycky, “functional analysis is an iterative process 

that examines system requirements to yield detailed design criteria” (2011, 86). The 

process identifies the resources needed to support and operate the system.  

With a review of the operational context and stakeholders’ needs, one can define 

the vital functions of an autonomous target-acquisition system. Figure 3 depicts the 

functional decomposition of the system and Table 1 captures functional descriptions.  
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Figure 3.  Functional Decomposition for the Conduct of 
Autonomous Target Acquisition 
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Table 1.   Description of Functions for the Conduct of 
Autonomous Target Acquisition 

S/N Function Description 
0 Conduct Autonomous Target 

Acquisition Top level function of the system 

1.0 Enable Autonomous Guidance The system level function of guiding the system 
autonomously. 

1.1 Generate trajectory The capability to generate an optimized trajectory given a 
pre-processed area of operation 

1.2 Determine guidance command The capability to determine the guidance commands, e.g., 
speed of rotors, to adhere to the desired path of travel 

2.0 Enable Autonomous Navigation The system level function of navigating the system 
autonomously. 

2.1 Determine current location The capability to determine the current location of the 
system  

2.2 Determine current state vector The capability to determine the current velocity or state 
vector of the system 

3.0 Enable Autonomous Control The system level function of controlling the system 
autonomously. 

3.1 Execute guidance command The capability to execute the guidance commands to 
achieve the necessary pitch, roll and yaw of the aircraft 

3.2 Analyze current performance The capability to analyze the current control performance of 
the system as part of feedback 

4.0 Enable Maneuverability  The system level function of being able to maneuver in the 
airspace 

4.1 Move in air The capability to fly along the commanded trajectory 
4.2 Avoid Obstacles The capability to detect and avoid any obstacle in the flight 

path 
5.0 Enable Autonomous Target 

Acquisition 
The system level function of acquiring the desired target 
autonomously. 

5.1 Process Imagery The capability to process the captured imagery to check for 
desired target. 

5.2 Acquire Target Location The capability to acquire the coordinates of the target’s 
location 

5.3 Lase Target The capability to lase the desired target for follow-on strike 
operation 

6.0 Enable Communication The system level function of communicating with external 
assets 

6.1 Establish and maintain links with 
GCS The capability to communicate with the GCS 

6.2 Establish and maintain links with 
fellow quadrotors The capability to communicate with the fellow quadrotors 

7.0 Enable On-board Sustenance The system level function of sustaining the power 
requirement of the system on-board. 

7.1 Store and supply power The capability to store and supply power to the entire 
system 

7.2 Protect against short-circuit The capability to protect the system from short-circuit 
8.0 Enable System Protection The system level function of protecting the system to 

enhance the survivability of the system 
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G. PROPOSED SYSTEM ARCHITECTURE 

With the functional requirement in mind, this research proposes a system 

architecture for an autonomous target-acquisition quadrotor using the SV-1 model, as 

illustrated in Figure 4. The proposed architecture has seven subsystems, namely,  

1. Processor and controller subsystem (depicted in yellow) 

2. Flight actuators subsystem (green) 

3. Target-acquisition subsystem (pink) 

4. Communication subsystem (blue) 

5. Positioning subsystem (purple) 

6. Collision-avoidance subsystem (brown) 

7. Power-supply subsystem (orange) 

In the same model, the author describes the system interfaces by providing the 

required communications network for the link between subsystem components and the 

information exchanged through the stated link. The following subsections further 

describe these subsystems. 
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Figure 4.  Proposed System Architecture for Autonomous Target Acquisition System Using Quadrotor 
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1. The Processor-and-Controller Subsystem 

The proposed processor-and-controller subsystem contains three components: the 

main processor, the flight controller, and the built-in test (BIT) device. This subsystem 

acts as the brain of the quadrotor. While the main processor and the flight controller 

differ in nomenclature, they are essentially similar onboard computers separated to 

increase processing speed, as the quadrotor must execute computationally intensive 

algorithms rapidly in flight. The main processor is responsible for processing the imagery 

received from the EO camera, while the flight controller continuously optimizes the flight 

trajectory and issues control commands. The main processor also receives and processes 

commands from the GCS or other quadrotors in collaborative mode and commands the 

Light Detection and Ranging (LIDAR) sensor to pick up obstacles in the path. The main 

processor communicates information on any found target or obstacles to the flight 

controller, so that the latter can modify the existing flight trajectory by moving to a new 

vantage point to maintain persistent stare on the target or maneuvering away from the 

obstacle. The flight controller goes on to determine target location. The main processor 

receives this information from the flight controller and transmits it to the GCS. A deeper 

exploration of the architecture of a feasible flight controller is presented in Chapter V.  

The BIT device is a component that runs built-in tests when the system boots up 

or on command. To save weight and space, there is no display interface for user 

interaction. The device receives or transmits all commands and feedback via wireless 

connection to the GCS or direct umbilical link to an external display and control. 

2. The Flight-Actuators Subsystem 

The flight-actuator subsystem comprises four rotors, with “rotor” understood as a 

set of motor, propeller and speed controllers. The rotors receive power inputs from the 

power-distribution box, and the thrust each rotor produces is a function of the power-

input received. Varying the thrust of the rotors collectively produces flight motion—that 

is, elevation, roll, pitch, and yaw. Chapter VI discusses flight-control specifications.  
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3. The Target-Acquisition Subsystem 

The target-acquisition subsystem consists of an EO camera, laser designator, and 

digital memory storage. The camera serves as the eyes for the system. While the 

quadrotor is in flight, the camera captures video of the ground in search of a designated 

target. The main processor in the processor-and-controller subsystem handles the image 

captured; when the target is in the camera’s field of view, the processor calls for the 

location of the target from the flight controller and transmits it to the GCS. The system 

then adjusts its trajectory to hover at a vantage point where the target is at the center of 

the camera’s view. On command, the laser designator fires a continuous electromagnetic 

pulse at the target to mark it for a precision strike. Throughout the process, the system 

stores the imagery captured in digital memory to allow future review of the engagement 

as required. 

4. The Communication Subsystem 

The communication subsystem consists of long-range and short-range 

transceivers. The long-range transceiver is responsible for establishing communication 

links with the GCS via radio frequency. The short-range transceiver is a critical 

component in enabling communications among a collaborative swarm of quadrotors 

executing the same mission. Either transceivers perform transmission on secured 

channels, with the data encrypted via the on-board the encryption key.  

5. The Positioning Subsystem 

The positioning subsystem consists of a GPS receiver and inertial-navigation 

system (INS). The GPS receiver attains the quadrotor’s position coordinates from the 

GPS satellites via radio frequency. The INS measures the current position of the 

quadrotor and acts as a redundant system to GPS where there is a loss of GPS signals. 

The subsystem initializes the INS position solution during system boot up, and the GPS 

receiver updates the solution periodically. The two components work in tandem to 

provide accurate position coordinates to the flight controller. These coordinates ensure 

that the quadrotor follows the optimal trajectory generated for the system.  
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6. The Collision-Avoidance Subsystem 

The collision avoidance subsystem consists of the LIDAR sensor now. 

Commanded by the main processor, the LIDAR applies radar principles and uses laser 

light to detect obstacles in the path of the quadrotor. It then transmits information of the 

heading and distance of the obstacles to the flight controller via the main processor, upon 

which the flight controller regenerates an optimal flight path to overcome the obstacle.  

7. The Power-Supply Subsystem 

The power supply subsystem consists of a battery, circuit breaker, and power- 

distribution box. The battery carries the electric charge necessary to power the entire 

system. The circuit breaker acts as a safety device by cutting electrical flow to the 

system, which may be necessary especially when human operators are in contact with 

components during initialization or maintenance. The power-distribution box distributes 

power from the battery to all other components in the system; critically, it controls the 

amount of power inputs supplied to the four rotors, based on the command output from 

the flight controller, as varying the power input alters the thrust produced at each rotor 

and in turn results in the different flight motions of the quadrotor. 

H. A VERIFICATION TESTING SCENARIO 

Based on the operational concept presented in Section II-D, the author developed 

a design scenario to conduct experiment for verification and validation of the feasibility 

for an autonomous target acquisition system using quadrotors. The thesis design scenario 

goes as follows: 

Prior intelligence indicates that an adversary’s MLRS is within the vicinity of a 

sub-urban terrain. The division command echelon tasked an SAF STORM team to 

perform target acquisition before following up with an engagement strike to destroy the 

MLRS. Given the terrain, there are unlikely areas where MLRS will be. To optimize the 

search process, these impassable areas are pre-processed, blocked and excluded from 

search path generation. 
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Figure 5 shows a fictitious area of operation extracted from Google Earth beside 

the processed overlay. The left image is an aerial view of the entire area of operation. The 

right image is the processed output after blocking the improbable or impassable areas for 

a land target, which in this case, are lakes. 

 

Figure 5.  Area of Operation with Processed Overlay. Adapted from 
Google Maps (2016). 

Operators then deployed two autonomous quadrotors to search for the MLRS 

along their autonomously found trajectories. Upon issuing the launch command, the 

operator at the GCS lets the system run autonomously. The autonomous system is 

capable of re-optimizing its initial planned trajectory in real-time should there be any 

obstacle in their path, and thereafter to maneuver around the obstacle. Upon positive 

acquisition of the target by the system, the quadrotor alerts the GCS operator, then loiters 

continuously to track the target. 
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III. A MODELLING AND SIMULATION ENVIRONMENT 

This chapter describes an experimental setup used to support the design scenario 

given in the previous chapter, addressing both hardware and software components. 

A. THE AUTONOMOUS SYSTEMS ENGINEERING AND INTEGRATION 
LABORATORY 

The Autonomous Systems Engineering and Integration Laboratory (ASEIL) is 

one of two indoor laboratories at Naval Postgraduate School allowing testing of 

quadrotors. Using equipment provided by Quanser, Inc., the laboratory provides a safe 

and controlled environment for the development of autonomous aerial and ground 

systems, employing Qball-X4 quadrotors, an indoor localization system and a desktop 

personal computer that acts as a ground control station.  

The space available for indoor flight operations measures approximately 4.5m 

long x 4m wide x 2m high, as illustrated in Figure 6. Foam mats overlay the floor to 

cushion the landing or impact that the quadrotors may make. There are 12 infrared 

cameras, which line the perimeter of the flight-operation area as part of the indoor 

localization system. The figure shows them as yellow triangles. The GCS is located to the 

south of the experimentation area and the origin for the indoor localization system is 

marked with a red cross, as shown. 

 

Figure 6.  ASEIL Layout 
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Throughout the conduct of flight experimentation, the safety of operators and 

other non-involved personnel is a high priority. A safety net surrounds the flight-

operation area to prevent quadrotor collisions with personnel and a warning on the 

exterior door indicates when a flight test is underway. 

B. UAV HARDWARE 

1. Qball-X4 Quadrotors 

The QBall-X4 quadrotor (“QBall” for short) is a commercial product of Quanser, 

Inc. It is a rotary-wing vehicle platform designed for researchers investigating potential 

applications of UAVs, with an open developmental architecture. Its guidance and control 

algorithms are easily adjustable by modifying the baseline control scheme at the GCS. 

Figure 7 shows a graphic overview of the Qball. 

 

Figure 7.  Qball-X4 Quadrotor 
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a. Motors and Propellers 

Following a quadrotor helicopter design, the Qball has four 740KV motors fitted 

with paired counter-rotating 10″x4.7″ propellers (10 being the diameter of the propeller 

measured from blade tip to blade tip and 4.7 the pitch of the blade). Each motor connects 

itself to its own speed controllers. The set of motor, propeller and speed controllers 

collectively form a rotor. Each rotor is mounted equidistance from each other along the 

Z-plane on the “+” frame of the quadrotor. Cowling et al. recommended that the 

configuration be such that the front and back rotors spin clockwise, while the left and 

right rotors spin counter-clockwise (2010). This paired-opposite arrangement prevents the 

yaw of the Qball at equal rotating speed of all four rotors.  

b. Protective Cage 

The QBall is enclosed entirely within a lightweight carbon-fiber cage to protect 

the unit from the minor collisions common in an indoor laboratory without incurring a 

severe weight penalty. Resembling a Buckminsterfullerene, the structure also provides 

mounting points for reflective markers. The later section on the indoor localization 

system shall explain further on the purpose of these markers. 

c. HiQ Data Acquisition Card (DAQ)/ Gumstix Embedded Computer 

The HiQ DAQ is an on-board avionics data-acquisition board for the Qball. 

Integrated with a Linux-driven Gumstix embedded computer, HiQ controls the Qball by 

reading the data provided by on-board sensors and outputting commands to the motors 

through the motor-speed controllers. As specified by Quanser, the Input/ Output of the 

HiQ includes (2010): 

• 10 pulse-width modulation (PWM) outputs (servo motor outputs) 

• a three-axis gyroscope with range configurable for ±75˚/s, ±150˚/s, or 
±300˚/s and resolution of 0.0125˚/s/LSB at a range setting of ±75˚/s 

• a three-axis accelerometer with a resolution 3.33 mg/LSB 

• six analog inputs, 12-bit, +3.3V 

• a three-axis magnetometer, 0.5 mGa/LSB 
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• an eight-channel RF receiver input (optional) 

• four Maxbotix sonar inputs 

• two pressure sensors (absolute and relative pressure) 

• input power of 10–20V 

d. Batteries 

Two three-cell 2500mAh LiPo batteries power the QBall, with each supplying a 

nominal voltage of 12.6V. The batteries are stacked vertically and strapped below the 

center of the quadrotor frame to maintain the QBall’s center of gravity. After a full 

charge, the batteries allow approximately 10 minutes of flight time. 

e. Joystick 

The user can fly the Qball manually, and control inputs are via the joystick 

provided by Quanser. Connected to the GCS through a universal serial bus (USB) port, 

the joystick has two components that translate lever motion into throttle, yaw, pitch and 

roll commands, as shown in Figure 8. Four sliders are available to supply trim signals for 

the four flight controls. Significantly, the joystick provides activation and kill switches 

for the QBall during autonomous operation. The Qball takes off upon receiving a small 

gain in throttle command and ceases flight when there is zero throttle gain.   

 

Figure 8.  Controller for Manual Operations 
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2. The OptiTrack Motion-Capture System 

The OptiTrack Motion Capture System is an indoor camera-based localization 

system developed by NaturalPoint. OptiTrack uses the installed Flex 3 infrared cameras 

to detect the reflective markers on the Qball’s protective cage. This allows the OptiTrack 

system to capture position and orientation throughout its flight. Table 2 lists the 

specifications of the infrared camera. 

Table 2.   Specifications of OptiTrack Infrared Camera. Source: 
OptiTrack (2014). 

Capability Specification 
Horizontal Field of View 46.2 degrees 

Vertical Field of View 34.7 degrees 
Resolution 640 x 480 pixel 
Frame Rate 25,50, 100 frames per second 

 

These cameras mounted around the walls of the ASEIL, near the ceiling, 

maximizes the capture volume of the laboratory as shown in Figure 9. The dimensions of 

the capture volume are approximately 4.5 m in length, 4 m in width and 2m in height, 

reflecting the available indoor flight-experimentation area. As long as the Qball remains 

within the capture volume, the system can perform six degrees of freedom (6DOF) 

tracking of the Qball.  

 

Figure 9.  Capture Volume within ASEIL 
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C. SOFTWARE ARCHITECTURE 

1. MATLAB and Simulink 

This thesis used MATLAB and Simulink extensively in the development of the 

control algorithms. The model-based Simulink software allows rapid configuration 

without tedious coding.  

2. QUARC Real-Time Control Software 

Quanser’s QuaRC real-time control software, a rapid control prototyping product, 

is the default software for controlling the QBall. Its architecture builds on the MATLAB 

and Simulink environments to facilitate the design and development of real-time 

applications. Quanser states that “QuaRC integrates seamlessly with Simulink’s high-

level graphical environment and allows Simulink diagrams to interface hardware and be 

run in real-time on a variety of local and/or remote targets” (2016, 2). 

Embedded within the software is a communication tool that bridges the GCS and 

the QBall’s Gumstix computer. Transmission Control Protocol (TCP) and Internet 

Protocol (IP) establish the connection between the two hardware. 

3. The OptiTrack Tracking Tool 

The OptiTrack application serves as the software interface for the OptiTrack 

Motion Capture System. The user needs to perform two critical procedures through the 

application for accurate tracking by the indoor localization system, as follows. 

a. Camera Calibration 

Calibration of the cameras is required to orientate the system and form the capture 

volume. Using a proprietary wand as shown in Figure 10, “wanding” or moving the wand 

in a figure-of-eight pattern around the indoor environment is carried out while the 

cameras tracks the three IR markers at the wand’s tip (seen as illuminated balls in the 

figure). 

Figure 11 shows the output of the wanding. The 12 boxes on the left of the figure 

show traces of the reflective markers captured by the 12 IR cameras. The block at the 
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right of the figure indicates the number of data points captured by each camera, and alerts 

the user if the system captured sufficient data points. 

 

Figure 10.  Wand Provided by NaturalPoint to Enable Camera Calibration 

 

Figure 11.  Output of Wanding 

Upon receiving sufficient data points for high quality calibration, the software 

prompts the user to start the calibration process. The software computes and calibrates the 

cameras based on these data points. Thereafter, the user set the ground plane by placing a 

calibration square, as shown in Figure 12, at the desired point of origin. The localization 

system then picks up the coordinates of the reflective markers. When setting the 

calibration square on the ground plane, the longer arm points to the ground control 

station, indicating to the localization system the direction of positive Z-axis. By default, 

the right-hand coordinate system is applied with the Z-axis is pointing towards to the 

ground control station. 
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Figure 12.  The 50mm Calibration Square Provided by NaturalPoint 

b. Calibration of Qball 

The OptiTrack system names objects for tracking as “trackables.” There is a need 

to calibrate the trackables for the OptiTrack system to detect, recognize and track them. 

The user first need to affix the object with the IR markers. If the user needs to track more 

than one objects at the same time, the arrangement of the IR markers has to be unique to 

allow the system to distinguish between the objects.  

The Qball is the object of interest and the author mounted four IR markers on its 

protective cage in an asymmetrical manner along all axes so that the OptiTrack system 

can detect its orientation. Figure 13 illustrates how the Qball appears in the motion 

tracking software through the reflective IR markers. The four nodes circled in red 

correspond to the IR markers mounted on the Qball. The image at the top left shows a top 

view (Y-plane) of the nodes. The Z-axis is pointing to the bottom of the figure and the X-

axis to the right. The image at top right presents a side view of the nodes down the 

negative Z-axis. The image at bottom is a perspective view. 
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Figure 13.  Qball as Seen from the Perspective of the OptiTrack System 

D. QUADROTOR MODELING 

The Qball is a dynamic model that can represents most of the commercially 

available Quadrotors. Before being able to manipulate the control algorithms of the 

Qball, it is necessary to understand the flight control actuation of quadrotor.  

1. Defining the Coordinate Frames 

The coordinate frame defines the directions of the Cartesian axes and in turn, the 

Euler angles for flight control. In the case of the Qball, the author applied a body fixed 

coordinate frame centered at the center of mass of the Qball, as seen in Figure 14a. The 

X-axis is pointing to the front of the Qball, and a rotation about the X-axis creates rolling 

moment. The Y-axis is pointing to the left of the Qball, and rotation about the Y-axis 

creates a pitching moment. Finally, the Z-axis points above the Qball, and rotation about 

the Z-axis creates a yawing moment. All axes follow the right hand rule. 

Now, it is appropriate to emphasize that the Qball axes differs from the coordinate 

system of the OptiTrack System. From the perspective of the indoor localization system, 
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the axes differ in direction as reflected in Figure 14b. The X-axis points positively to the 

right of the Qball, the Y-axis points positively upwards and the Z-axis points positively to 

the rear of the Qball in the direction of the GCS. Hence, there is a need for the user to 

translate the OptiTrack coordinates, which acts as the global coordinates, accordingly to 

the Qball’s local frame of reference for the Qball to move as per the desired direction. 

 

Figure 14.  Qball-X4 Axes and Sign Conventions. Adapted from 
Quanser (2010). 

2. Dynamics of Quadrotor Actuators 

The thrust generated by each of the mounted propellers determines the elevation, 

pitch, roll and yaw of the Qball. Unlike a fixed-wing airplane whereby rudder and 

ailerons control the attitude of the airplane, a quadrotor accomplishes these motions by 

varying the speed at each rotor. Therefore, it is pertinent to understand the dynamics of 

the quadrotor actuators to gain control over the quadrotor. 

a. Thrust 

The thrust F that is generated by the individual rotors follows the first-order 

system seen in equation (1), where u is the pulse-width modulation (PWM) input to the 

actuators, ω is the actuator bandwidth and K is a positive gain. Therefore, by varying the 

amount of PWM input supplied to each of the motors, the system can individually control 

the amount of thrust generated by each propeller. 
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 F K u
s
ω
ω

=
+

  (1) 

b. Roll and Pitch 

Speed variation in each of the propellers produces force vectors that translate to 

the pitch, roll and yaw of the Qball. There is positive roll when the left rotor spins faster 

than the right rotor. There is positive pitch when the front rotor has a lower PWM input 

and spins slower than the rear rotor.  

Equation (2) calculates the Euler angle in the X-axis, or roll angle. J is the 

rotational inertia of the Qball in the roll axes; L is the distance between the center of the 

propeller and the Qball’s center of gravity; and ΔF is the net force generated between the 

two motors involved in the pitch/roll motion. The same equation can determine the pitch 

angle θ.  

 J FLφ = ∆   (2) 

c. Yaw 

There is yaw about the Z-axis when there is a resultant torque between the two 

clockwise rotating propellers (the front and back rotors) and the two counter-clockwise 

rotating propellers (the left and right rotors). Figure 15 illustrates a model of the yaw axis 

with the directions of the propeller rotation shown. The Z-axis of the body-fixed 

coordinate frame points out of the page; and hence, positive yaw is an anti-clockwise 

moment. Equation (3) calculates the Euler angle about the Z-axis or yaw angle, where the 

resultant torque is 1 2 3 4τ τ τ τ τ∆ = + + + .  

 yaw yJ y τ= ∆   (3) 
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Figure 15.  Yaw Model of Qball 

d. Height 

How much thrust all four propellers provide determines the height of the Qball. 

Equation (4) represents the dynamic model of the Qball’s height, where m is the total 

mass of the Qball, h is the height attained, F is the thrust generated by each propeller, ϕ is 

the roll angle, θ is the pitch angle, and g is the acceleration due to gravity. 

 4 cos cosmh F mgφ θ= −   (4) 

The overall thrust vector is a function of the pitch and roll angle, and therefore the 

Qball will not be perpendicular to the ground if any angle is non-zero.  

e. System Parameters 

Table 3 summarized the values of the various system parameters in the given 

dynamics equations. 
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Table 3.   System Parameters of Qball-X4. Source: Quanser (2010). 

Parameter Value 
K 120 N 
ω 15 rad/sec 

J = Jroll = Jpitch 0.03 kgm2 
Jyaw 0.04 kgm2 
m 1.4 kg 
L 0.2 m 
Ky 4 Nm 

 

f. State and Control Vectors 

With actuated dynamics reviewed, it is here appropriate to express the total 

normalized thrust and the second-order derivatives of the Euler angles in a control vector 

û  as formulated in equation (5), where 1 1 2 3 4u τ τ τ τ= + + + , 2u φ= , 3u θ=   and 4u ψ=  .  

 [ ]1 2 3 4ˆ Tu u u u u= + + +   (5) 

The position coordinates and Euler angles can be expressed in twelve-state vector 

as formulated in equation (6), where [ ], , Tx y z  is the translational position of the Qball 

center of gravity in the North-East-Down coordinate frame and [ ], , Tφ θ ψ is the attitude 

vector that contains the three Euler angles (Cowling et al. 2010). 

 , , , , , , , ,
T

x x y z x y z φ θ y =  
       (6) 

Typically, the equations of motion of aerial vehicles use the standard aeronautical 

rotational matrix Rxyz. Cowling et al., however, has simplified the equations of motion of 

the quadrotor using an alternative rotational matrix Rzyx (2006). Applying the rotational 

matrix to the body-fixed coordinate frame of the Qball, the translational equations of 

motion become the expressions shown in equations (7), (8) and (9): 

 1 cos sinx u φ θ= −   (7) 

 1 siny u φ= −   (8) 

 1 cos cosz u gφ θ= −   (9) 
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With the preceding set of equations, the first derivative of the state vector is in the 

form shown in equation (10). 
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To address the subsequent chapter of trajectory generation using direct method, 

Cowling et al., (2006) proposed the desired output of the system 𝑦𝑦 to contain the 

translational positions and yaw angle as seen in equation (11). 
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IV. PLANNING AND OPTIMIZATION OF THE SEARCH PATH 

Obviously, any deliberate action begins with a plan. This applies to an 

autonomous system, which follows and executes the plan of a commanding operator. For 

a target-acquisition system, target identity and location are key. While autonomous 

planning algorithms and high-level processes for developing artificial intelligence (AI) 

are beyond the scope of this research, the author has adopted the principle of developing 

a logical sequence of actions “to transform an initial world state into a desired goal state” 

(LaValle 2006, xi). LaValle cites several factors that are basic to any plan: 

• State space 

• Time 

• Criterion 

• Set of Actions 

A. SEARCH-PATH PLANNING 

1. State Space 

The area of search operations defines the initial state space of the plan. Starting 

from the location of the GCS, an autonomous system may start searching for the target 

from any direction. The current state space may be vast, and it is not necessarily logical 

to search the entire area—for example, a land target is highly unlikely to be over a body 

of water. The user can eliminate such implausible area from the initial state space. With a 

smaller state space, lesser computational resources are required to find the optimized 

path.  

In contrast to an AI system, defining and even reducing the state space is 

relatively simpler for an autonomous system. The reason is that the system does not 

entirely exclude presence of man, and that he can performs this role to understand the 

world on behalf of the autonomous system. At the start of the operation when planning 

takes place, the man-in-the-loop is able to decipher the start state and input only the 

reduced conditions to the autonomous system. Thus, the autonomous system has a 

smaller state space to work with and can produce faster results.  
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2. Time 

A plan can either explicitly model or implicitly represent time. In this 

optimization of a search path, both expressions of time are important and critical. Firstly, 

explicit time is a constraint to an optimization process. The objective for the search path 

optimization is essentially to cover the entire plausible area in the shortest amount of time 

by travelling the least amount of distance. As for implicit time, it is a reflection of having 

to follow the sequence of waypoints generated by the optimization process. Order matters 

to ensure optimality.   

3. Criterion 

LaValle shares that there are generally two types of criteria, which influences the 

planning outcome, namely feasibility and optimality (2006). According to LaValle, 

feasibility disregards efficiency and search for a plan that achieve the goal state; whereas 

optimality searches for a feasible plan while satisfying constraints imposed on the 

system. Obviously, the search-path optimization falls into the second criterion.  

Two constraints must be satisfied to qualify as an optimal path: (a) the path has to 

be of the shortest in length, which translate to shortest time to completion; and (b) 

economy of traversal—the path has to be completed in a single loop without revisiting 

the same area.    

4. Set of Actions 

With state space, time and criterion defined, the plan now must specify the 

“actions that manipulate the state” (LaValle 2006, 18).  

As mentioned earlier on the role of the man in the loop, the operator is responsible 

for, and highly capable of processing an area of operation quickly to eliminate 

implausible search area. He then passes on this useful information to the autonomous 

system. With the boundaries of the area of operation defined, the system’s processor can 

commerce searching for an optimized path by first discretizing the plausible areas into 

nodes. This action facilitates the computational work to satisfy the constraints.  
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Next, the constraints are set as discussed earlier. The processor computes the 

distances between nodes and finds the shortest route to connect all nodes in a single loop.  

Finally, the operator activates the autonomous system to begin searching based on 

the optimal search path generated.  

B. SEARCH PATH OPTIMIZATION 

The author has deliberately modelled the existing problem after the travelling 

salesman problem (TSP). The latter is a classical non-deterministic polynomial-time 

(NP)-hard problem, which has numerous known heuristics and exact algorithms. Just as 

the TSP looks for the shortest possible route that visits all the cities exactly once before 

returning to the city of origin, a target-acquisition search path attempts to find the shortest 

possible path to cover all nodes exactly once before returning to the originating GCS. 

The most straightforward avenue towards solving the TSP is to use linear 

programming to work out all possible combinations of the solution, compute the 

associated costs of each combination, and determine the combination with the least cost. 

Such a brute-force solution is practical only for a small number of nodes, however, 

because the number of combinations grows exponentially. Nevertheless, the solution has 

the virtue of exactitude.  

The thesis formulates the optimized search path problem as a binary integer linear 

program (ILP). The author then uses MATLAB to generate all possible connections 

between two nodes and compute the respective straight-line distance. The objective 

function for the ILP is to minimize the total distance required to connect all nodes, as 

expressed in Equation (12). Equation (13) defines the binary decision variable, where “1” 

bit represents a chosen connection and “0” bit represents otherwise. A series of 

inequalities serves as constraints to restrict the solution. Equations (14) and (15) ensure 

that there is exactly one arrival and departure to and from each node respectively. 

Equation (16) enforces the feasible solution to be of a single tour, which is one 

continuous loop connecting all nodes. These equations are given as follows: 
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Here dij is the distance between nodes i and  j, and xij is the decision variable to determine 

whether nodes i and j are connected to each other. 
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C. SIMULATION SCENARIO 

To demonstrate the feasibility of using ILP to optimize the search path, the thesis 

performs a simulation of the possible planning operation. The code used in captured in 

Appendix B.  

1. Pre-processing 

As shown in Figure 16, pre-processing starts with creating an overlay on the map 

containing the area of search (see left image). Then, the areas that are impassable for the 

target are shaded on the overlay (see middle image). The author then saved the overlay in 

joint photographic experts group (JPEG) format and imported it into MATLAB 

environment as a three-layer array. The author carried on to flatten the array to a single 

layer to speed up its processing. To further increase the speed, the author converted the 

single layer array into a binary array (see right image). The shaded area is represented by 

“0” while the empty area is represented by “1.” The reader can safely assume that the 

imported image is undistorted. 
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Figure 16.  Pre-Processing of Area of Operation 

Based on the size of the image, the code creates two vectors to represent the X- 

and Y coordinates of the map. These vectors form the basis for the location of the nodes. 

In an image with a resolution of 640 x 480, each of these vectors has 307200 elements, 

one for each pixel. The element locations of the shaded area in the binary matrix are then 

determined to remove the elements of the same position in the two coordinate vectors. 

Now, the reader can see the vectors as “to search” vectors.  

Given that the search camera has a finite field of view, the user can reduce the “to 

search” vector by aggregating those coordinates that can be “seen” by the camera as it 

flies over a single point. The code only considers the width of the camera’s field of view 

for ease of computation. Figure 17 shows the interim output, which depicts the nodes and 

the shaded area. 

 

Figure 17.  Possible Detection Area Discretized with Nodes 
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2. Optimization 

The author implemented the ILP, as discussed above, in MATLAB environment. 

Using the MATLAB in-built optimization solver, a single loop connecting all the nodes 

generated shown in the Figure 17 forms the optimized search path. Figure 18 shows the 

path as dotted line on the map. Based on a camera with its width of vision at 30m, 236 

equidistance nodes were plotted in non-shaded area on an otherwise 336 nodes in the 

entire area of operation of dimension 640m x 480m. The total distance covered in an 

optimized path is approximately 7.25km instead of approximately 9.80km when combing 

through the entire area of operation.  

 

Figure 18.  Optimized Search Path 

The essential output of the optimization run is the sequence that connects the 

nodes in a single tour and the respective coordinates. This forms the optimal waypoints 

for the Qball’s traversal. 

3. Obstacles Avoidance 

The search for an optimized search path has assumed a flat terrain with no major 

impediments. The assumption is not true in reality. Hence, there will be a need to execute 

certain maneuver to overcome the obstacles in the path of the system. The system can fly 

either around or over the obstacles. The next chapter shall go on to present the 

methodology of generating the trajectory necessary to overcome the obstacles.  
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V. DIRECT METHOD-BASED TRAJECTORY GENERATOR  

Given the finite processing ability of an autonomous vehicle and the need for 

rapid response in a dynamic environment, it is imperative that an autonomous processor 

be capable of making decisions on its trajectory from limited input. The direct method of 

calculus of variations avails as a potential methodology of choice.  

There is two part to the direct method: 

First, by exploiting the inverse dynamics of the Qball, optimization can occur in 

the output space instead of the control space, because inverse dynamics expresses the 

state and control vectors as functions of the output. Moreover, this results in differentially 

flat derivatives.  

Next, the method performs optimization in the virtual domain instead of the 

conventional time domain. This decouples the time and space parameterizations, whose 

combination tends to create complexity in resolving the variables. The applied 

methodology is therefore inverse dynamics in the virtual domain or IDVD method.    

The central idea of IDVD is to use only a small set of variables to achieve a near-

optimal solution. Because lesser parameters are required for computation, the 

computational time to determine a quasi-optimal trajectory is significantly less than with 

other direct methods.  

A. CONTROLLER ARCHITECTURE 

Cowling et al. have proposed a controller architecture that is suitable for 

trajectory generation (2010), as illustrated in Figure 19. Two major entities form the 

architecture seen below, which are the trajectory generator and trajectory follower. They 

are separated by the dotted line in the figure, with the trajectory follower occupying the 

upper half. 
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Figure 19.  General Architecture of Controller. Source: Cowling et al. (2010). 

The role of the trajectory generator is to produce a feasible near-optimal path for 

the Qball depending on the operating scenario. The system generates the trajectory with 

consideration of boundary (initial and final) conditions, mission-performance index and 

other flight constraints. While the solution is feasible and near optimal, it may not 

necessarily be the most optimal. Nevertheless, given the relatively short time needed to 

generate the trajectory, it remains advantageous to adopt the direct method in the 

controller as befitting a time-sensitive environment. 

The trajectory generator is also capable of generating new trajectories in real-

time, which enables re-optimization during flight. In the context of an autonomous target-

acquisition system in the military domain, there may be new situation updates such as 

new threats found in the area of operation. This would require alterations in the flight 

path of the quadrotor. Such an ability to redirect the quadrotor is critical to the mission 

commander. In addition, there tends to be some discrepancy between the actual path 

taken and the trajectory generated, owing to disturbances or imperfections in the 

controller. Hence, the presence of an update switch in the architecture that enables 

updating of the trajectory generator with a new set of conditions however big or small the 

changes are. Cowling et al. recommended the updates to run at a frequency of 0.01 Hz to 

0.1Hz to maintain optimality (2010). This is, however, dependent on the on-board 

processing ability of the quadrotor.  
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Trajectory following calls for the presence of an interpolator to ensure that the 

quadrotor maintains the reference trajectory by detecting disturbances that might cause 

deviation. Hence, the architecture uses linear quadratic regulator (LQR) to track and 

monitor the real-time trajectory (Cowling et al. 2006). The LQR runs at a higher 

frequency of 4 Hz–100 Hz to detect and counter disturbances to the reference trajectory. 

B. INVERSE DYNAMICS IN THE VIRTUAL DOMAIN 

According to Cowling et al., the reader can see the inverse dynamic in the virtual 

domain (IDVD) as a four-part process (2010). First is the generation of a reference 

trajectory that is independent of the time domain. Second is the use of a speed factor to 

revert the time-independent reference trajectory from the virtual domain to back to time 

domain. Third is to utilize inverse dynamics to determine the controls necessary for the 

Qball’s motion. Fourth and finally, is the optimization of the trajectory, which is 

constrained by the boundary conditions.  

1. The Reference Trajectory 

To decouple space and time, Cowling et al. suggest the use of a virtual arc τ to 

express trajectory to enable optimization of the velocity history independently along the 

trajectory (2010). The virtual variable serves as a reference function in the virtual domain 

and varies between zero and a finite value τf.  

The IDVD method needs parameterization of the trajectory. Many different 

parameterizations can approximate the three Cartesian coordinates that represent the 

trajectory. All methods bear similarity to Equation (17) which involves the product of a 

free variable ak and a basis function Γf.  

 ( ) ( )
0

M

k f
k

P t a t
=

= Γ∑   (17) 

The order of parameterization, M, is defined by the number of boundary 

conditions that needs to be satisfied. It is formulated in equation (18), where d0 is the 

highest-order spatial derivative of the initial conditions and df is likewise of the final 
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conditions. The reader can further increase this order if a higher degree of freedom is 

desired. 

 0 1fM d d= + +   (18) 

According to Chua, the trajectory can hence be parameterized using trigonometric 

terms (2013). The X-, Y- and Z-coordinates are formulated as shown in equations (19), 

(20) and (21), where
f

ττ
τ

= . Given that both the initial and final conditions have their 

highest-order of derivatives as three, the order of parameterization would be seven in this 

case.  
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and 
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0
1 1

cos sinz z zi zi
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z P a a i b iτ τ πτ πτ
= =

= = + +∑ ∑   (21) 

To determine the unknown coefficients, Chua suggested to resolve the following 

system of equations shown in (22) for each of the three Cartesian coordinates. For the 

right-hand side of the equation, x0 and xf represents the initial and final states of the 

Qball. Together with the first and second-order derivatives ( )' ' '' ''
0 0, , ,f fx x x x , they form the 

constraints to be satisfied. The third-order derivatives ( )''' '''
0 , fx x , also known as the initial 

and final jerk, remains as free variables.  
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2. Speed Factor 

To optimize the trajectory in the output space, space and time were decoupled 

using a virtual arc, τ. To switch from the virtual domain back to the time domain for 

controlling the quadrotor, or in another words to separate the trajectory from the speed 

profile a variable speed factor that relates virtual arc τ to time as shown in equation (23) 

is employed. 

 ( ) d
dt
tλ t =   (23) 

The reader can change the speed profile along the reference trajectory by varying 

the speed factor as shown in equation (24). 

 ( ) ( ) ( ) ( ) ( )2 2 2' ' 'V x y zτ λ τ τ τ τ= + +   (24) 

3. Differential Flatness 

An important feature of the IDVD is the exploitation of the differential flatness 

property of the system, such that the author can express the system’s states and controls 

using the output vector and its derivatives (Koo and Sastry 1999). Therefore, the author 

can represent the roll and pitch angles as a function of the output vector as shown in 

equations (25) and (26).  

 arctan x
g z

θ
 

=  − 




  (25) 
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and 
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Their respective first derivatives then become those shown in equation (27) and 

(28).  
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and 
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Singularity may occur during computation when g z−   or when the quadrotor is 

in free fall. The reader can avoid singularity by ensuring that the control vector is greater 

than zero and that both θ and ϕ are greater than 90°.  

With the differentially flat equations above, optimization of the trajectory can 

occur in the output space, which decreases computational time tremendously as compared 

to using variables in the control space.  

4. The Cost Function 

Optimization involves achieving an outcome that fulfills an objective given 

certain constraints. To determine the optimality of the trajectory found, it necessitates 

qualitative measurement by means of a cost function. The cost function derived by Chua 

is a combination of the performance index of the trajectory and weighted penalties for not 

meeting the constraints, which are formulated in equation (29) and (30) respectively 

(2013).  

 2 2 2 2

0

1(1 ) ( ) ( )
ft

h v f
f

PI w P x y P z dt w t T
t

= − + + + −∫      (29) 

and 
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The constraints included by Chua involve limitations due to arrival time at the 

final conditions, the QBall’s attitude, the presence of obstacles, and the spatial 

dimensions of the ASEIL. 
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VI. MIXING GUIDANCE COMMANDS 

Building on the trajectory optimization presented in Chapter III, this chapter 

discusses how to leverage the existing control scheme developed by Quanser to rapidly 

prototype a feasible control architecture for an autonomous quadrotor.   

A. THE QUANSER CONTROL SCHEME 

The control scheme developed by Quanser allows the user to switch between 

manual joystick control and autonomous position and height control. The manual joystick 

control gives the operator full flight control of the Qball while the autonomous position 

and height control leverages on the position tracking input supplied by the OptiTrack 

Camera System to pilot the Qball autonomously. Quanser has built the entire control 

model in Simulink environment, which enables user to modify the model easily. 

Figure 20 illustrates the main page of Quanser’s control model. It consists of 10 sub-

subsystems to translate user input to commands executable by the Qball. Of interest to 

this thesis is the modification made to the “Position Commands” subsystem, which will 

be explained in a later section.  

 

Figure 20.  Quanser’s Controller Representation in Simulink 
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The “mode control” subsystem allows the user to opt for joystick manual control 

or autonomous control via the “Position Commands” subsystem. The “Calculate Roll 

Pitch Heading” computes the roll, pitch and heading angles during the Qball’s flight 

using the input from the gyroscopes and accelerometers on the Qball. The “Joystick from 

host” subsystem is responsible to communicate with the joystick connected to the host 

station. It receives the various command input from the user via the joystick and directs 

them to the relevant subsystem controller. It also acts as the interface to receive 

coordinates input from the OptiTrack System. The latter is an important input in 

autonomous mode. The three controller subsystems—“Pitch Controller,” “Roll 

Controller” and “Yaw Controller,” processes the joystick commands or input from the 

OptiTrack System to produce control signals. The “Control Signal Mixing” block 

receives the signals from the controllers and translate them into motor output command. 

The “HiQ Subsystem” is the main interface block to communicate with the data 

acquisition card on the QBall. It reads the motor output from the “Control signal mixing” 

block and sends PWM signals to the Qball. These signals are responsible for 

commanding the actuators, which translate to motion of the Qball. Finally, the “Save 

Data” block outputs all the flight data into a binary MATLAB file, which facilitates 

analysis subsequently.  

The original “Position Commands” subsystem, as shown in Figure 21, allows the 

user to use the slider gain block to generate heading, height and position commands for 

the Qball. These commands are more intuitive to the user as the frame of reference is in 

the coordinate or state space rather than control space when using the joystick. The user 

can toggle the sliders during mid-flight to command the Qball to move autonomously to 

the desired coordinates. This is a useful feature as only coordinates or waypoints are 

required to command the Qball. The subsequent sections in this chapter shall present the 

use of this feature in the control scheme to achieve autonomy in the Qball system. 
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Figure 21.  Original Position-Commands Subsystem 

B. WAYPOINT MANAGEMENT 

Earlier in this thesis, the author showed that the process of path generation results 

in establishing a sequence of discrete nodes on a map. The ILP process reads these nodes 

and output an optimal flight path that connects all nodes in a single loop. The nodes when 

ordered in sequence become waypoints for the Qball to follow.  

Quanser’s autonomous control scheme calls for the user to define the coordinates 

of the waypoint in all three Cartesian axes, and it will maneuver the Qball to that 

waypoint accordingly. This scheme takes in only a single-step input, however, whereas a 

continuous signal input is required to navigate the Qball through multiple waypoints. 

Besides following the coordinates of the waypoints, a truly autonomous control scheme 

needs to read and perform different mission tasks such as taking off, hovering or landing 

to be autonomous during the mission.  
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This research proposes the construct of a user-defined MATLAB function–the 

“Waypoint Manager” that executes continuously in the Simulink environment. To use the 

waypoint manager, the user first has to define several matrices to store coordinates of the 

waypoints and the required tasks at each waypoint. Real-time coding by Simulink then 

reads these matrices through the waypoint manager, which uses the switch function to 

determine the output command signals into the existing control scheme. Another critical 

input for the waypoint manager is the OptiTrack coordinates because the waypoint 

manager compares the real-time input against the waypoint coordinates in temporary 

memory. As long as the difference is within a defined tolerance level, the Qball will meet 

arrival condition and the waypoint manager will proceed to read the next elements in the 

coordinates and task matrices. The user can also input operating height if the user desires 

to move the Qball in a flat trajectory. Similarly, the user can use the waypoint manager to 

introduce loitering time at each waypoint through the Waypoint Manager. Figure 22 

presents the waypoint manager algorithm. 

Such a waypoint-management subsystem has the benefit of not imposing further 

constraints on the existing control scheme. Moreover, the user command occurs in state 

space, which is intuitive to the user, and the user can apply the output from the optimized 

search path directly.  
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 Input: commanded coordinates, OptiTrack coordinates, operating height, next 
task, simulation time 

 Output: position commands 
  
1. tolerance = 0.1 m 
2. hover time = 5 sec 
3. index = 1 
4.  
5. switch mission state 
6.  case initialize 
7.   position commands = 0 
8.   if simulation time >= 3 
9.    mission state = take off 
10.   end if 
11.  case takeoff 
12.   position commands = [0, 0, operating height] 
13.   ifabs(position commands - OptiTrack coordinates) < tolerance 
14.    mission state = go to waypoint 
15.   Endif 
16.  case go to waypoint 
17.   position commands = commanded coordinates (index) 
18.   ifnext task = go on 
19.    ifabs(position commands - OptiTrack coordinates) < 

tolerance 
20.     mission state = hover 
21.     time to move = simulation time + hover time 
22.    Endif 
23.   else 
24.    mission state = land 
25.   Endif 
26.  case land 
27.   position commands = [commanded coordinates(1), commanded 

       coordinates(2), 0] 
28.  case hover 
29.   if simulation time >= time to move 
30.    mission state = go to waypoint 
31.    index = index + 1 
32.   Endif 
33. Endswitch 

Figure 22.  Waypoint Management Algorithm 
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C. THE COLLISION-AVOIDANCE SUBSYSTEM 

While the previous control algorithm gives some control over the height 

management of the Qball by specifying the Z-coordinates or operating height, it does not 

yield an optimal trajectory that avoids intermediate obstacles between waypoints. Thus, 

there is a need to correct the trajectory between two waypoints to avoid known obstacles. 

Generating a near-optimal trajectory using the IDVD avails the possibility to achieve this 

correction. The previous chapter has explained the methodology of generating the near-

optimal trajectory. The task remains to integrate the two control inputs.  

To fulfil the above requirement, the author proposes a collision avoidance 

subsystem to input the control signal generated by the direct method at the known 

waypoint before the obstacle. A redlined box enclosed the subsystem in Figure 23. As the 

Qball arrives at this known waypoint, the prior-mentioned waypoint manager reads the 

next task as avoidance of imminent obstacle, instead of merely as “go on.” As such, the 

position commands will receive signal input from the newly introduced subsystem 

instead. After the Qball executes the obstacle avoidance maneuver and arrives at the next 

waypoint, readings from OptiTrack will cause the waypoint manager to switch back to 

reading control signals from the pre-defined waypoint coordinates and task matrices. The 

Qball then continues on its optimal search path. 

 

Figure 23.  Collision Avoidance Subsystem as a Part of Waypoint Manager 
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The collision avoidance subsystem consists of three 1-D lookup tables that stores 

the interpolated coordinates along the near-optimal overhead trajectory. An adjacent user-

defined MATLAB function rotates the Cartesian coordinates into the coordinate frame 

used by the control scheme. Close examination of the collision avoidance subsystem 

seems to indicate less-than-elegant modelling. This is largely due to the limitation of 

Simulink whereby it reads all input signals at the start of the simulation. To bypass this 

constraint, the subsystem uses the integrator block with a flat unit signal to prevent the 

output of the lookup table. When the Qball arrives at the waypoint immediately before 

the obstacle, the waypoint manager raises a flag. This sends a rising signal into the 

integrator block, causing the lookup table to re-output its stored data from the beginning 

at a rate that matches the size of the simulation time step. Hence, the state space where 

the Qball physically resides matches the initial input of the collision-avoidance signal and 

the Qball may smoothly carry out the overhead maneuver.  

Upon the conclusion of the avoidance, the lookup table clips its output signal at 

the last line read; therefore, the user needs to set this final input to zero at the system-

initialization phase. As a result, the subsystem adds only null to the waypoint signal as a 

command-position output. Another possible method explored in this research is to use 

time as a means of preventing any additional collision-avoidance and waypoint signals. 

Because the user knows the total time required to complete the overhead maneuver, 

owing to his prior input to the waypoint manager, the code can count the time elapsed 

during the maneuver and lower a flag at the end of the stated time to stop further output 

from the lookup table. Thus, only the waypoint signal creates position-command output. 

Both these methods work, with no significant difference in outcome. 
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VII. SIMULATION RESULTS 

Given the limited flight experimentation area at ASEIL, the author modified and 

downscaled the mission scenario. The first experiment dealt with the Qball following a 

flat trajectory set by mere input of waypoint coordinates. The purpose is to verify the 

method of waypoint navigation using the existing controller. The second experiment 

observed the Qball executing a maneuver over an obstacle between two waypoints using 

output from the near-optimal trajectory generation. The intent here is to determine the 

ability of the controller to execute the trajectory generated using the IDVD method. The 

third experiment was devoted to the Qball following a flat trajectory first before 

executing an overhead maneuver in the middle of its mission path in a mixed position 

command signals scenario. The resolve in this experiment is to validate the architecture 

set up to perform collision avoidance amidst the search mission. 

A. INITIAL SETUP PROCEDURES 

Before conducting each experiment, the author used to the following checklist for initial 
setup: 

• Charge two LiPo batteries to full capacity before establishing wired 
connection to Qball. 

• Switch on Qball using the two switches along the power cable. 

• Establish wireless connection between Qball and GCS on the wireless 
network and QUARC interface. The latter requires the input of the QBall’s 
IP address as target uniform resource locator.  

• Check Host Joystick model for up-to-date entry of calibration and 
trackable files. 

• Check Qball Controller model for correct entry of host and target IP 
addresses. 

• Load any necessary data from other codes or models, e.g., coordinates of 
waypoints. 

• Perform incremental build on both Simulink models. Connect to target and 
start real-time coding on the Host Joystick model before Qball controller 
model. 
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B. CONDUCT OF EXPERIMENTS 

1. Waypoint Following 

In this experiment, the intent was to observe if the QBall was able to navigate 

itself successfully through all the defined waypoints in a sequential manner. In addition, 

the observer verified straight and level flight posture towards each waypoint. 

a. Input parameters 

The author established five waypoints, not including the start and endpoint, along 

planned the flight profile. Table 4 captures the X-Z coordinates of these waypoints, 

including the expected task. Given the limited flight experimentation area, a concern was 

that the waypoints might not be reasonably far apart; but the conditions proved 

satisfactory in providing respectable results. The author kept the trajectory flat by holding 

the operating height at 0.6 m. The Qball started its flight from the origin and passed each 

waypoint before moving onto the next waypoint. The Qball then landed at the final 

waypoint.  

Table 4.   Coordinates of Waypoints and Respective Task to Execute 

Waypoint # x (m) z (m) Task 
0 0 0 Take off 
1 -1 1 Go on 
2 1 1 Go on 
3 1 -1 Go on 
4 -1 -1 Go on 
5 -1 0 Go on 
6 0 0 Land 

 

  



 61 

b. Flight Results 

The QBall executed a successful flight consistent with the waypoints and tasks 

allocated. From Figure 24, the Qball maintained a relatively flat trajectory as it flew 

along the path defined by the waypoints.  

 

Figure 24.  3D View of the Executed Flight Profile 

In Figure 25, one can see the flight trajectory of the Qball from the top view. The 

Qball maintained a relatively straight course towards each waypoint. 
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Figure 25.  Top View of Qball’s Flight Trajectory 

Figure 26 presents time histories of X, Y, Z coordinates along with commanded 

inputs. One can appreciate the fact that the Qball has achieved a close alignment to the 

commanded signal as the two lines nearly coincide in each axes. The third subplot, 

however, indicated some differences between the actual path and command signal of 

approximately 20 cm, due to small errors generated by the Quanser’s LQR controller.  

 

 

Figure 26.  Time Histories of X, Y, Z Coordinates with Commanded Inputs 
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2. Obstacle Avoidance 

This experiment assumed that the operator found an obstacle in the path of the 

quadrotor that exceeded the operating height of the mission. The obstacle had a height of 

0.65m and an overhead maneuver was preplanned to avoid it. The author then generates a 

near-optimal trajectory using IDVD, and pipes the output to the “Position Command” 

Subsystem. 

a. Input parameters 

To generate the near-optimal trajectory using IDVD, it is necessary to spell out 

the boundary conditions of the system. These values as tabulated in Table 5 forms the 

input parameters to the trajectory optimization model.  

Table 5.   Input Parameter to Trajectory Optimization Model 

Parameter Value 
Time given to execute maneuver, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑, sec 20 sec 
Initial waypoint coordinates, 𝑥𝑥(𝑡𝑡0), 𝑦𝑦(𝑡𝑡0), 𝑧𝑧(𝑡𝑡0),  m 1, 0, 0.6 
Initial velocity, 𝑥̇𝑥(𝑡𝑡0), 𝑦̇𝑦(𝑡𝑡0), 𝑧̇𝑧(𝑡𝑡0),  m/s 0 
Initial acceleration, 𝑥̈𝑥(𝑡𝑡0), 𝑦̈𝑦(𝑡𝑡0), 𝑧̈𝑧(𝑡𝑡0),  m/s2 0 
Final waypoint coordinates 𝑥𝑥(𝑡𝑡0), 𝑦𝑦(𝑡𝑡0), 𝑧𝑧(𝑡𝑡0),  m -1, 0, 0.6 
Final velocity, 𝑥̇𝑥(𝑡𝑡0), 𝑦̇𝑦(𝑡𝑡0), 𝑧̇𝑧(𝑡𝑡0),  m/s 0 
Final acceleration, 𝑥̈𝑥(𝑡𝑡0), 𝑦̈𝑦(𝑡𝑡0), 𝑧̈𝑧(𝑡𝑡0),  m/s2 0 

 

b. Model Output 

With the input parameters set into the trajectory optimization model, it output the 

near-optimal trajectory with interpolated waypoints between the initial and final 

waypoints. Figure 27 illustrates the side view of the planned maneuver. The area shaded 

in green represents the obstacle that is of height 0.65m. The area in yellow represents the 

safety buffer to account for any mid-flight disturbance or erroneous approximation of the 

actual height of the obstacle. Figure 28 presents a top view of the same maneuver.  
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Figure 27.  Near-Optimal Trajectory Generated Using IDVD to Avoid Vertical 
Obstacle (Side View) 

 

Figure 28.  Near-Optimal Trajectory Generated Using IDVD to Avoid Obstacle 
(Top View) 
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c. Flight Results  

The Qball again produced a successful flight using only the input of the 

interpolated waypoints, which serve as position commands for the control scheme. Figure 

29 presents the actual trajectory undertaken by the Qball. The Qball adhered to the 

commanded path with minimal error. Figure 30 illustrates the flight path of the Qball 

from a top view. One can observe that the Qball has managed to fly in almost a straight 

line. Figure 31 presents the time histories of X, Y, Z coordinates along with commanded 

inputs. Again, the reader could see the Qball performing well in executing the 

commanded position control signal.  

 

 

Figure 29.  3D View of the Executed Flight Profile 
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Figure 30.  Top View of Qball’s Flight Trajectory 

 

Figure 31.  Time Histories of X, Y, Z Coordinates with Commanded Inputs 
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3. Mixed Guidance 

For the mixed guidance experiment, the author uses the same set of waypoints 

established in the first experiment, with the exception of the task at waypoint 3, which the 

author changed to execute an overhead maneuver. The near-optimal trajectory generated 

in second experiment is still relevant with to this experiment with merely a translation of 

the position commands in the x-axis from origin to x = 1. Two position command signals 

the collision avoidance signal and waypoint signal are now both inputs into the Qball 

control scheme through the waypoint manager.  

a. Flight Results 

The experiment yielded the successful results seen in Figure 32. The Qball 

maintained a flat trajectory throughout its flight until arrival at the waypoint where it 

executed a successful overhead trajectory to avoid a vertical obstacle. 

 

 

Figure 32.  3D View of Integrated Flight Profile 
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In Figure 33, one can observe the Qball’s flight trajectory from the top view. The 

Qball executed an overhead maneuver between (1, 1) and (1, -1) in an otherwise flat 

trajectory. The outcome seems similar to that seen in the first experiment: this is a 

deliberate juxtaposition to emphasize that, even with the mixing of position-control 

commands, the QBall can follow and execute commands appropriately. The same effect 

is seen in Figure 34, which presents the time histories of the X, Y, and Z coordinates, 

along with commanded inputs. Again, the QBall performed well in the state space. 

 

Figure 33.  Top View of Qball’s Trajectory in an Integrated Flight Profile 
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Figure 34.  Time Histories of X, Y, Z Coordinates with Commanded Inputs 

Figure 35 presents a side view of the Qball’s trajectory. While the shape of the 

actual trajectory closely resembles the commanded trajectory, one can still observe some 

errors especially at the apogee. The Quanser’s control scheme also takes in sonar 

readings from the sensor located at the base of the Qball to adjust its flight controls. The 

precision level of the sensor affects the readings, which in turn affects the vertical flight 

vector control. Nevertheless, the control scheme still manages to execute the maneuver as 

intended.       
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Figure 35.  Side View of Qball’s Trajectory 
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VIII. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 

This thesis introduces a feasible system architecture that uses visual sensors to 

achieve autonomous capabilities using quadrotors. By using the systems engineering 

approach, it had facilitated the autonomous system design through the examination of the 

stakeholders’ needs and followed by the formulation of functional requirements. Such a 

method of system thinking provides a logical and comprehensive design solution. 

Based on the system architecture proffered, the thesis proposes a means to further 

flight autonomy, providing verification through a series of simulations. Specifically, the 

system optimized the search path using ILP before carrying out waypoint navigation. 

With user’s input of possible vertical obstacles, the system executed an overhead 

maneuver with the near-optimal trajectory generated using IDVD. The successful flight 

simulations demonstrated the feasibility of autonomous trajectory following and obstacle 

avoidance.  

Problems with the software for a miniature IP camera prevented integration of the 

camera into the quadrotor, as originally planned. However, the author has developed 

onboard autopilot software in anticipation that live camera signals will be available in the 

near future as vendors correct the software problems.  

The thesis demonstrated that a quadrotor-based autonomous system is a feasible 

and definitely useful option for the SAF advances in manned-unmanned systems 

integration. With an autonomous system, it could greatly enhance strike and 

reconnaissance capacity and capability, allowing the SAF to fortifying its strike 

competency by seeing first, seeing fast, and seeing more.   

B. RECOMMENDATIONS 

The author recommends the following future work in similar areas of interest: 

• Embed visual sensors to achieve real-time obstacle detection for mid-
flight collision avoidance.  
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• Enable the input of GPS coordinates into the control scheme so that future 
work may extend indoor experimentation to outdoor usage.  

• Improve the feedback mechanism of the existing controller to minimize 
height errors between commanded and actual flight.  

• Create a graphical user interface that enables the operator to perform the 
entire mission via a single interface, instead of the current piecemeal 
approach.  
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APPENDIX A.  IMAGE PROCESSING FOR REAL-TIME 
TRACKING 

The employment of cameras is inevitable in a target-acquisition system, 

especially so in an autonomous system. The computer perceives and processes the world 

through the camera, and therefore the discipline of computer vision comes into play as it 

attempts “to describe the world that we see in one or more images and to reconstruct its 

properties, such as shape, illumination, and color distributions” (Szeliski 2010, 5). While 

humans perform the task of visioning effortlessly, a computer takes a longer and uses 

more resources to interpret the same data—and yet its output tends to be error prone. 

The achievement of computer vision depends on the type of camera used. While 

the common camera captures visible light to form an image, thermographic camera uses 

infrared radiation for imaging. Researchers and operators commonly apply both 

techniques of imaging in a single electro-optical/ infrared (EO/IR) camera module, as 

seen in Figure 36. These modules are high in both precision and resolution. While it is 

beyond the scope of this thesis to explore EO/IR imagery, the author used an Internet 

protocol (IP) camera to model and demonstrate the imaging functions that may enhance 

the overall capability of an autonomous target-acquisition quadrotor.  

 

Figure 36.  Star SAFIRE 380-HD. Source: FLIR Systems, Inc. (2016). 

A. COLOR VS. GRAY-SCALE VIDEO 

It is imperative to understand the basics of imagery prior to delving deeper into 

target detection as part of target acquisition. Starting from the typical video output of a 



 74 

surveillance camera, the video is in essence as a sequence of digital images woven 

together. Picture elements, or pixel in short make up a digital image; and a pixel is the 

most basic unit, which represents a color for a physical point in the digital space. The red-

green-blue (RGB) color system can specify the color of this pixel. It expresses each of the 

three additive colors (red, green and blue), in 256 levels. The combination of three colors 

at any desired level forms a spectrum of color space, which contains over 16.7 million 

different possible colors.  

Three matrices in the MATLAB environment can therefore represent a digital 

image, one matric for each of the three colors. All three matrices have the same number 

of elements as the number of pixels in that image, and each element contains the color 

level value of each pixel in the same physical space. Reading just a single matric would 

yield the same image in a monochromatic fashion. 

While it is intuitive for a human to interpret images in color, doing likewise in the 

computer is computationally intensive given the number of elements to process. Three 

matrices in the RGB system represent a fully colored image, whereas the use of greyscale 

only needs only one matric for representation. Color information will be, however, lost in 

greyscale as only the intensity of white against black is stored. Nevertheless, there is a 

saving in computer memory storage space, and it facilitates faster processing 

subsequently as only one layer is required to be read. A binary image, which is also of a 

single layer but only has black and white color. As such, it is desirable to perform image 

processing in grey- or binary scale so that there is a shorter processing, which can be 

crucial in a time-sensitive environment.  

B. BLOB ANALYSIS TO ATTAIN TARGET CENTROID 

MATLAB’s computer-vision toolbox affords the user with many ready-to-use 

functions. One is blob analysis, which computes various “statistics for labeled regions in 

a binary image” (MATLAB 2016, 1–186). Of importance is the return of the centroid 

position of the blob. The author sets minimum and maximum values of 500 and 15000 

respectively for detection of the desired blob. Such a setting is predefined and can be akin 

to the estimated target size with respect to the screen.   
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A necessary output of target acquisition is the location of the target in the physical 

space. The location of which will facilitate own forces to carry out follow-on strike in the 

attempt to persecute the target. This is achievable by measuring the target’s centroid 

relative to the frame captured by the IP camera. Assuming that the user knows the 

position of the Qball, he can determine the location of the target by computing the offset 

from the center of the screen. The user would have previously calibrated this offset and 

hence the computation would provide the coordinates of the target.   

C. THE TREK AI-BALL 

The Trek Ai-Ball is an IP camera, shown in Figure 37 that allows the user to view 

and record video wirelessly. A commercial product from Trek 2000 International Ltd, the 

Ai-Ball extends image capturing and processing capabilities to the Qball’s architecture. 

The Ai-Ball is compact and lightweight in design. Powered by a CR2 battery, the Ai-Ball 

weighs approximately 100g and is only 30mm in diameter and 35 mm long. Its wireless 

communication capability makes it well-suited to integrate with the Qball. Table 6 lists 

the critical specification.  

 

Figure 37.  Trek Ai-Ball 

Table 6.   Specification of Trek Ai-Ball. Source: Trek (2007). 

Capability Specification 
Field of View 60 degrees 

Resolution VGA 640 x 480 pixel 
Frame Rate Up to 30 frames per second 

Wireless Interface IEEE 802.11b/g 2.4GHz ISM Band 
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APPENDIX B.  OPTIMIZATION SCRIPT TO PROCESS SEARCH 
AREA AND DETERMINE SEARCH PATH 

clc 
clear all 

% read pre-processed map (with pre-shaded areas) and convert to gray 
scale  
% to flatten the image 
orig_map=imread(‘area_of_ops_overlay.jpg’);    % filename of image 
gray_map=rgb2gray(orig_map);        

% To-search area represented by a binary matrix. Areas which are not 
shaded 
% out will be 0 and to-search area by 1.  
size_gray_map=size(gray_map); 

for x=1:size_gray_map(1) 
    for y=1:size_gray_map(2) 
        if gray_map(x,y)>200       % empirical treshold for non-grey 
area 

bin_map(x,y)=1; 
        else 

bin_map(x,y)=0; 
        end 
    end 
end 

% To create x- and y-vector that represent the x- and y-coordinates on 
a  
% cartesian plane starting at the origin based on size of the map read. 

ind_k=0; 
for ind_i=1:numel(bin_map) 
    if mod(ind_i,size_gray_map(2))==0 
        ind_k=ind_k+1; 
    end 
    y_vector(ind_i)=ind_k; 
end 

ind_n=0; 
for ind_j=1:numel(bin_map) 
    x_vector(ind_j)=ind_n; 
    ind_n=ind_n+1; 
    if ind_n==(size_gray_map(2)) 
        ind_n=0; 
    end 
end 

%% 
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% To define a matrix, J that represents location of zeros (shaded area) 
% within the binary matrix that represents the map 
B=flipud(bin_map); 
K=reshape(B’,1,[]);  
J=find(K<1); 

% To determine the x- and y-coordinates of the shaded area 
gray_x=x_vector(J); 
gray_y=y_vector(J); 

% To remove the locations of the shaded area from x- and y-vector, 
% resulting in the vector containing only the coordinates of the to-
search 
% area 
x_vector(J)=[]; 
y_vector(J)=[]; 

%% 
% Given that the search camera has a certain Field of View (FOV), 
assuming  
% fixed in size, the to-search vectors can be reduced by eliminating 
those  
% coordinates that fall within the FOV when flying through an 
aggregated  
% point. 
width=30;                           % FOV of camera 

for ind_z=1:length(x_vector) 
    if mod(x_vector(ind_z),width)>0 
        x_vector(ind_z)=0; 
    end    
end 
ind_u=find(x_vector<1); 
x_vector(ind_u)=[]; 
y_vector(ind_u)=[]; 

for ind_z=1:length(y_vector) 
    if mod(y_vector(ind_z),width)>0 
        y_vector(ind_z)=0; 
    end    
end 
ind_v=find(y_vector<1); 
x_vector(ind_v)=[]; 
y_vector(ind_v)=[]; 

%% 
% translation to account for different origin 
origin=[-200 -200];       % user input  
x_vector=x_vector+origin(1); 
y_vector=y_vector+origin(2); 
gray_x=gray_x+origin(1); 
gray_y=gray_y+origin(2); 

%% To generate a scatter plot that represents the to-search nodes 
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hold on 
axis([origin(1) 640+origin(1) origin(2) 480+origin(2)]); 
scatter(x_vector,y_vector,’.’); 
scatter(gray_x,gray_y,’.’); 
  
%% Finding the Optimized Flight Path 
  
% To determine all possible combination of connecting the nodes so as 
to  
% measure the distance for each combination. Objective function would 
be to  
% minimize the total distance of the single path connecting all the 
nodes. 
num_nodes=numel(x_vector); 
all_combi=nchoosek(1:num_nodes,2); 
dist_x=x_vector(all_combi(:,1)) - x_vector(all_combi(:,2)); 
dist_y=y_vector(all_combi(:,1)) - y_vector(all_combi(:,2)); 
node_dist=sqrt(dist_x.^2+dist_y.^2); 
len_node_dist=length(node_dist); 
  
% Constraints for objective function: 
% 1. All nodes are passed once 
% 2. All nodes need to be connected 
  
cons_1=spones(1:length(all_combi)); 
cons_2=num_nodes; 
  
cons_1 = 
[cons_1;spalloc(num_nodes,length(all_combi),num_nodes*(num_nodes-1))];  
for node_ind = 1:num_nodes 
    which_combi = (all_combi == node_ind);  
    which_combi = sparse(sum(which_combi,2));  
    cons_1(node_ind+1,:) = which_combi’;  
end 
cons_2 = [cons_2; 2*ones(num_nodes,1)]; 
  
% To generate the binary decision variables 
intcon = 1:len_node_dist;           % integer constraints 
dec_zero = zeros(len_node_dist,1);  % lower bound  
dec_one = ones(len_node_dist,1);    % upper bound 
  
% Using intlinprog for as the optimization solver 
opts = optimoptions(‘intlinprog’,’Display’,’off’); 
[path,costopt,exitflag,output] = intlinprog(node_dist,intcon,[],[],... 
    cons_1,cons_2,dec_zero,dec_one,opts); 
  
% Update Plot  
hold on 
segments = find(path);  
line_handle = zeros(num_nodes,1); 
line_handle = updatePlot(line_handle,path,all_combi,x_vector,y_vector); 
  
% check for any sub-optimal solution, i.e., number of paths required to  
% connect all the nodes 
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route_check = checkSub(path,all_combi); 
num_sub_path = length(route_check);  
if num_sub_path==1 
    fprintf(‘Optimal path found.\n’);  
else  
    fprintf(‘# of sub-optimal paths: %d\n’,num_sub_path); 
end 
  
% Reiteration of solver until optimal path is found 
Ineq_1 = spalloc(0,len_node_dist,0);  
Ineq_2 = []; 
while num_sub_path > 1  
    Ineq_2 = [Ineq_2;zeros(num_sub_path,1)];  
    Ineq_1 = [Ineq_1;spalloc(num_sub_path,len_node_dist,num_nodes)];  
    for node_ind = 1:num_sub_path 
        ind_row = size(Ineq_1,1)+1;  
        ind_sub_path = route_check{node_ind};  
        all_var = nchoosek(1:length(ind_sub_path),2); 
        for ind_t = 1:length(all_var) 
            whichVar = 
(sum(all_combi==ind_sub_path(all_var(ind_t,1)),2))... 
                & (sum(all_combi==ind_sub_path(all_var(ind_t,2)),2)); 
            Ineq_1(ind_row,whichVar) = 1; 
        end 
        Ineq_2(ind_row) = length(ind_sub_path)-1;  
    end 
  
    % Recall Solver 
    [path,costopt,exitflag,output] = 
intlinprog(node_dist,intcon,Ineq_1,... 
        Ineq_2,cons_1,cons_2,dec_zero,dec_one,opts); 
     
    % Update Plot 
    line_handle = 
updatePlot(line_handle,path,all_combi,x_vector,y_vector); 
     
    % Check for sub-optimal path 
    route_check = checkSub(path,all_combi); 
    num_sub_path = length(route_check); % number of subtours 
    if num_sub_path==1 
        fprintf(‘Optimal path found.\n’);  
    else  
        fprintf(‘# of sub-optimal paths: %d\n’,num_sub_path); 
    end 
end 
  
%% to determine coordinates of waypoints in sequence 
  
% route row index shows sequence 
% route(:,1) shows waypoint number in graph 
% route(:,2) shows x-coord for waypoint  
% route(:,3) shows y-coord for waypoint 
  
route_seq(:,1)=route_check{1}’; 
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for ind_a=1:num_nodes 
    route_seq(ind_a,2)=x_vector(route_seq(ind_a,1)); 
    route_seq(ind_a,3)=y_vector(route_seq(ind_a,1)); 
end 
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